
Learn matlab series#
plotEnsemble.m - plot a set of time series in a compact format.inputs.m - generate input sequences, unit white noises, filtered white noises, chirp, impulse.ftdsp.m - digital signal processing (band-pass filtering, integration, differentiation) with the FFT.accel2displ.m - remove some bias and drift from acceleration data and compute displacement.PronyFit_test.m - a simple example of the use of PronyFit.m.PronyFit.m - linear least squares with l 1 regularization to fit a Prony series.L1_fit_test.m - a simple example of the use of L1_fit.m.L1_fit.m - linear least squares with l 1 regularization.Linear least squares with l 1 regularization mypolyfit.m - fit in an arbitrary power polynomial basis (actually linear least-squares).lm_plots.m - utility to plot results from lm.m.
Learn matlab how to#
lm_func.m - an example of how to enter a model for lm.m.lm_examp.m - an example of how to call lm.m.lm.m - Levenberg Marquardt algorithm: minimize sum of weighted squared residuals.The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems.Nonlinear least squares via Levenberg-Marquardt plot_cvg_hst.m plots the convergence history for the solution computed by ORSopt, NMAopt, or SQPopt.plot_surface.m plots the cost function as a surface over two of the parameter values, ORSopt, NMAopt, or SQPopt.optim_options.m is needed for ORSopt.m, NMAopt.m, and SQPopt.m.box_constraint.m determines the box constraint scaling factor a>0 to the perturbation vector r from x such that: max( x+ar) -1.avg_cov_func.m calculates average and coefficient of variation of a random penalized objective function.SQPopt.m implements a sequential quadratic programming algorithm.ORSopt.m implements an optimized step-size random search algorithm.NMAopt.m implements a Nelder-Mead algorithm.Examples of running constrained minimization codes.m-functions implement methods for minimizing a function of several parameters subject to a set of inequality constraints:į(x) is a scalar-valued objective function, Nonlinear constrained optimization, in general GEV GEV_pdf.m GEV_cdf.m GEV_inv.m GEV_rnd.m Laplace Laplace_pdf.m Laplace_cdf.m Laplace_inv.m Laplace_rnd.m Gamma gamma_pdf.m gamma_cdf.m gamma_inv.m gamma_rnd.m Rayleigh Rayleigh_pdf.m Rayleigh_cdf.m Rayleigh_inv.m Rayleigh_rnd.m

Poisson Poisson_pmf.m Poisson_cdf.m Poisson_rnd.mĮxponential exp_pdf.m exp_cdf.m exp_inv.m exp_rnd.m Log-normal logn_pdf.m logn_cdf.m logn_inv.m logn_rnd.m Normal normpdf.m normcdf.m norminv.m randn.m Quintic quintic_pdf.m quintic_cdf.m quintic_inv.m quintic_rnd.m Quartic quartic_pdf.m quartic_cdf.m quartic_inv.m quartic_rnd.m Quadratic quadratic_pdf.m quadratic_cdf.m quadratic_inv.m quadratic_rnd.mĬubic cubic_pdf.m cubic_cdf.m cubic_inv.m cubic_rnd.m

Triangular triangular_pdf.m triangular_cdf.m triangular_inv.m triangular_rnd.m Uniform unifpdf.m unifcdf.m unifinv.m rand.m m-functions can be used to compute probability distributionįunctions and to generate samples of random variables.
